Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We construct proper good moduli spaces parametrizing K‐polystable ‐Gorenstein smoothable log Fano pairs , where is a Fano variety and is a rational multiple of the anticanonical divisor. We then establish a wall‐crossing framework of these K‐moduli spaces as varies. The main application in this paper is the case of plane curves of degree as boundary divisors of . In this case, we show that when the coefficient is small, the K‐moduli space of these pairs is isomorphic to the GIT moduli space. We then show that the first wall crossing of these K‐moduli spaces are weighted blow‐ups of Kirwan type. We also describe all wall crossings for degree 4,5,6 and relate the final K‐moduli spaces to Hacking's compactification and the moduli of K3 surfaces.more » « less
-
Abstract We show that the K-moduli spaces of log Fano pairs $$({\mathbb {P}}^3, cS)$$ ( P 3 , c S ) where S is a quartic surface interpolate between the GIT moduli space of quartic surfaces and the Baily–Borel compactification of moduli of quartic K3 surfaces as c varies in the interval (0, 1). We completely describe the wall crossings of these K-moduli spaces. As the main application, we verify Laza–O’Grady’s prediction on the Hassett–Keel–Looijenga program for quartic K3 surfaces. We also obtain the K-moduli compactification of quartic double solids, and classify all Gorenstein canonical Fano degenerations of $${\mathbb {P}}^3$$ P 3 .more » « less
-
Abstract We show that the K-moduli spaces of log Fano pairs $$\left(\mathbb {P}^1\times \mathbb {P}^1, cC\right)$$ , where C is a $(4,4)$ curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ , complete intersection curves in $$\mathbb {P}^3$$ . This, together with recent results by Laza and O’Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$ curves on $$\mathbb {P}^1\times \mathbb {P}^1$$ and the Baily–Borel compactification of moduli of quartic hyperelliptic K3 surfaces.more » « less
An official website of the United States government
